目次
はじめに!
ブログをご覧の皆さん、こんにちは!
伊予鉄松山市駅から徒歩3分、松山市の武田塾松山校です!
今回のテーマは「MARCH・地方国公立レベルの数学問題集9選」です!
それぞれどういう志望校の人やどういう役割、どういう目的で使うのが良いかなど全部お話していきたいと思います!
ぜひ参考にしてみてください!
また、今回紹介する内容は武田塾の公式YouTubeチャンネルでもお話しているのでぜひそちらも併せてご覧ください!
1冊目、2冊目
1冊目は『文系の数学 重要事項完全習得編』です!
そして2冊目も併せて紹介します!
2冊目は『数学Ⅲ 重要事項完全習得編』です!
この辺のシリーズは最初かなり易しいです。
『基礎問題精講』に毛が生えたような問題から始まってくれています。
難しい参考書もある中でそのレベル差で苦しむ人も多いですが、このシリーズの参考書は基礎からの橋渡しとして優秀な2冊になっています!
また、『文系数学 重要事項完全習得編』(赤文系数学)は私立文系の数学選択の人から圧倒的な支持を得ています。
そのため数学が易しいと言われている青山学院大学や関西学院大学や関西大学などを志望している人たちは『文系数学重要事項』1冊でも十分戦えるレベルになっています!
『数学Ⅲ 重要事項完全習得編』に関しては地方国公立の理系に向いている1冊になっています!
地方国公立の理系の過去問なども比較的難易度は簡単ですが、数Ⅲの対策が追いついていない分受験生からすると辛いです。
そのため地方国公立で数Ⅲの難易度が高くない大学は多いので、地元の国公立を目指す人たちは『数学Ⅲ 重要事項完全習得編』をしっかりとやっておけば戦うことができます!
目標にしている大学の偏差値次第では『数学Ⅲ 重要事項完全習得編』1冊で十分なのでぜひやってみてください!
3冊目
3冊目は『文系の数学 実践力向上編』です!
『文系の数学 実践力向上編』はどのような人に人気かというと、MARCHで文系数学を使う人や国公立の難しすぎない大学で文系数学使いますという人から支持されている1冊です。
『重要事項完全習得編』の後にチョイスされやすく、入試の典型問題・鉄板問題を本当の意味で押さえている本は『実践力向上編』になります。
『重要事項』を噛ませてスムーズに基礎問からの橋渡しとして行かせて、『実践力向上編』をメインで仕上げるという流れのイメージです!
ここのレベル帯の問題が押さえられたらMARCH・国公立レベルと言われる大学は十分戦える実力が付くという1冊です!
以上の3冊は数学が苦手な人に向いています。
ポイントが押さえられており解説も易しいです!
4冊目
4冊目は『国公立標準問題集CanPass』です!
『CanPass』は数学Ⅰ・A・Ⅱ・Bと数学Ⅲの2冊に分かれていますが、これはアウトプットを仕上げる参考書です。
国公立を目指す人が解き方は別の本で習得してきたけど、演習を何かしたいという場合にオススメです!
そもそもインプットの本とは何かという話ですが、考え方が詳しく書いてある問題集のことで『文系数学重要事項』、『文系数学実践力向上』や後で紹介しますが『数学標準問題精講』、『1対1対応の演習 数学』などこの辺りがインプットの本になります。
『CanPass』はどちらかというと解説はそこまで丁寧ではないです。
簡潔に書いてあるという感じなので、「考え方を磨こう!」と考えている人は辛いと思います。
ただ、問題はチョイスされていて、難しい問題が多くアウトプットに最適です!
苦手を克服したり、得意を伸ばすことに活用しましょう!
5冊目、6冊目
5冊目と6冊目もまとめて紹介していきたいと思います!
『理系数学 入試の核心』、『文系数学 入試の核心』です!
この2冊の魅力は解説もいいですが、コンパクトであるという点です。
両方とも150題でレベル幅は広いですが、易しい問題から難しい問題までカバーできるという1冊で、コンパクトで仕上げの1冊というイメージです!
解説が詳しく量もコンパクトなので頑張れば1ヶ月半くらいで終わらすことができます。
1ヶ月半くらいかけて定着しているかの確認ができるので、自分の穴があればそこを塞げば良いという使いやすい1冊です!
使うタイミングとしては『基礎問』を仕上げて、『文系数学』などを挟んでいるならその後に足しても良いという感じです。
特に『理系の数学 入試の核心』を使う人が多いと思いますが、その場合は『文系数学重要事項』→『数学Ⅲ重要事項』→『入試の核心』という流れでやると使いやすいです!
到達レベルに関しては旧帝大や最難関大学を除く国公立であれば数学の範囲をカバーできる有能な参考書です。
7冊目
7冊目は『数学重要問題集』です!
この参考書は少し注意が必要です!
ボリュームが非常に多いです!
解説が簡素なことに加えてA・B・Cの問題があり、特にC問題のレベルに関しては難易度が高すぎます。
Aは押さえてほしく、Bも人によっては不要で難易度が高いという国公立の中でもかなり難しい問題を集めている印象です。
ただ、この1冊を仕上げると到達点も高く、どんな大学でもいけます!
また、この参考書はインプットの本ではなくアウトプットの本です。
問題量が豊富なため伸ばしたい分野で活用し、アウトプット力を最大限に高めていきましょう!
8冊目
8冊目は『数学標準問題精講』です!
数学Ⅰ・AやⅡ・BやⅢがあり、Ⅰ・Aは簡単です。
そのため『数学基礎問題精講』の後に接続することはできますが、問題はⅡ・Bで『数学Ⅱ・B標準問題精講』の難易度が非常に高いです!
前のレベルの参考書からの接続が難しく時間に余裕のある人しか取り組めない内容になっています。
ただ逆に良い点もあって、問題量が豊富な点と「精講」でプロセスが書いてあります。
この問題はこういう段階を踏んで解いていくという考え方がまとめられています。
手厚く数学を対策したい人向けで高2の夏から最難関大志望者が取り組む参考書としてオススメです!
説明できるようにしよう!
このレベルの参考書はすべてですが、「この問題はこう解く」と言葉で言えるようにすることが大事です!
数学は絶対にどのレベル帯の問題でも方針を言葉にする訓練はやってほしいです。
問題を見た瞬間に解き方の方針を言えると数学の対応力がかなり養われます。
ぜひやってみてください!
9冊目
9冊目は『1対1対応の演習/数学』です!
この参考書は特徴がある本で、解説が高級な解き方をします。
つまり1歩上の上級者向けの解き方をすることが多いです。
問題の内容自体は難しすぎることはなく、理系の人にオススメしたい至極の1冊です!
最難関の理系を目指す人が準備として解き方を揃えることができます!
また、高級な解き方の話に戻りますが、高級な解き方とは汎用性がある解き方とも言えます。
他の問題集ではこの問題さえ解ければいいので、近道でこう解くということがあります。
しかし、『1対1対応』はその問題だけを解いても意味がないという考えがあるので、この問題を使用してさらに上のレベルを解くためにあえて別の方法で解いていくという特徴があります。
初見の人は解き方に困惑する場合もありますが、現時点から学ぶと上級レベルにも対応することができます!
初級レベルの問題でも近道で解くのではなく、将来投資型で先を見据えた解き方を学べるので数学が得意な人向けの参考書です!
まとめ
今回は MARCH・地方国公立レベルの数学問題集9選 についての紹介でした!
数学の勉強で失敗しやすい人は解説が薄い参考書を使いがちです。
インプットとアウトプットの参考書を上手く使い分けて数学の力をつけましょう!
2023年の数学ルートのブログもあるので、ぜひ参考にして実力をつけてください!
最後に!
武田塾松山校では随時 無料受験相談 を行っています!
受験に関する悩みや疑問など、ぜひお気軽にご相談ください!
↓お申込みはこちらから!↓
武田塾松山校
〒790-0003
愛媛県松山市三番町5丁目5-2EXビル
【TEL】089-993-7345